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Abstract

The genus Ramicrusta (order Peyssonneliales) is a new record for Micronesia, with range

expansions of Ramicrusta fujiiana and R. lateralis to Guam. In addition, four species (Rami-

crusta adjoulanensis, R. asanitensis, R. labtasiensis, and R. taogamensis) are newly

described from Guam using molecular and anatomical characters. Ramicrusta lateralis

specimens from Guam share most anatomical features with the holotype description from

Vanuatu, but the plants from Guam are more tightly adherent, rigid, and robust than those of

Vanuatu. Ramicrusta adjoulanensis possesses a well-developed epithallus with frequent

cell fusions, secondary pit connections, and lacking hair bases or trichocytes, similar to

Ramicrusta bonairensis. Ramicrusta adjoulanensis differs from other Ramicrusta species in

having occasionally free margins and being attached by frequently produced, relatively long

rhizoids (75–100 μm long). Ramicrusta asanitensis shares features with many other spe-

cies, but the thickness of the crust (upwards of 2 mm thick), heavy calcification in the epithal-

lus, and the extent of secondary, tertiary, and quaternary growth, differentiate it from other

Ramicrusta species. Ramicrusta labtasiensis shares features with its close relative Rami-

crusta lateralis but possesses frequent, robust, and relatively long rhizoids (75–95 μm long)

throughout its entire undersurface. Ramicrusta taogamensis resembles its close relative

Ramicrusta appressa but is primarily distinguished by its generally well-developed epithallus

with occasional secondary pit connections and cell fusions. The six species reported here

make Guam equal to Vanuatu in currently having the highest known species richness of

Ramicrusta in the world.

Introduction

Among crustose calcifying red algae (CCRA), calcifying and encrusting members of the Peys-

sonneliales [1] have historically been overlooked in favor of the more frequently studied mem-

bers of the Corallinophycidae. However, advances in molecular techniques have greatly
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benefitted studies of CCRA diversity and systematics [2, 3]. Recently, however, the Peyssonne-

liales have received more attention and recognition in part due to their ecological [4–10] sig-

nificance. Members of the Peyssonneliales are distributed circumglobally, occurring from

shallow intertidal waters to depths greater than 250 m [1, 6, 9]. Recent studies have reported

some members of the Peyssonneliales comprising significant portions of benthic reef habitats

[4, 5, 7] and inhibiting coral growth [10], while another documented their potential to be resil-

ient in the face of future ocean acidification [8].

There are currently 13 recognized genera in the Peyssonneliales [11]. One of these genera,

Ramicrusta [12], was initially distinguished from other Peyssonneliales crusts by possessing

secondary pit connections. More recently, Ramicrusta has been further distinguished from

Peyssonnelia using a suite of additional vegetative characters such as a combination of second-

ary pit connections, cell fusions, and unicellular rhizoids [13] in support of its generic status

based on phylogenetic inference. One such vegetative feature, initially referred to as ‘hetero-

cysts’ [12], are present near the dorsal surface in the majority of Ramicrusta species. Pueschel

and Saunders [14] hypothesized that these enlarged cells embedded in the perithallus were the

persistent bases of shed hairs. When present, these hair bases are often, but not always, much

larger than neighboring filaments, bullet-shaped, and terminate filaments of two to seven cells

[12–15]. Following that interpretation, they have conventionally been referred to as ‘hairs’ or

‘hair bases’ when describing new Ramicrusta species [13, 15]. However, analogous structures

in the Corallinophycidae are known as trichocytes [16, 17] and, following the convention

introduced by Ballantine et al. [15], we will refer to these structures as ‘hair bases or tricho-

cytes’, or simply ‘hair bases’, herein.

Ramicrusta nanhaiensis D.R.Zhang & J.H.Zhou, the type species of Ramicrusta, was

described from the Paracel Islands in the South China Sea [12]. Since then, 14 additional spe-

cies have been described or transferred to Ramicrusta [11]. Six of these species were described

from Vanuatu and Australia in the southern Pacific [13]. Additionally, Peyssonnelia calcea
Heydrich, a species described from Papua New Guinea with a Pacific-wide distribution, was

transferred to Ramicrusta [13]. The remaining seven species were described from the Carib-

bean Sea and the Hawaiian Islands [11]. The first species of Ramicrusta known from the west-

ern Atlantic, Ramicrusta textilis Pueschel & G.W.Saunders, was described in 2009 from

nearshore reefs in Jamaica [14] and was later reported for Puerto Rico [18], Vanuatu [13], and

Taiwan [19]. In 2016, Ramicrusta monensis Ballantine, Ruiz, Lozada-Troche & Norris was

described from Puerto Rico, and Ramicrusta bonairensis Ballantine, Ruiz, Lozada-Troche &

Norris was described from Bonaire and has been reported for Puerto Rico [15]. In 2018, Rami-
crusta melanoidea K.R.Dixon was described from northwestern Australia and Vanuatu [20] as

a Ramicrusta species based on its morphological features, but molecular data suggests that the

species might be better placed in a different genus [21]. Ramicrusta fujiiana E.M.S.Pestana, G.

N.Santos, Cassano & J.M.C. Nunes and Ramicrusta paradoxa E.M.S.Pestana, G.N.Santos, Cas-

sano & J.M.C.Nunes were recently described from southeastern Brazil [22]. Most recently,

Ramicrusta hawaiiensis A.R.Sherwood and Ramicrusta lehuensis A.R.Sherwood, were

described from Lehua Island in Hawaii [23]. Finally, a yet undescribed species of Ramicrusta
was reported from Tunisia, representing the first report of the genus in the Mediterranean

[24].

In the Caribbean, R. textilis is known to rapidly overgrow living coral, which can result in a

significant loss of living coral and associated organisms [18]. However, the composition of

macro-invertebrate and fish communities associated with Ramicrusta-dominated reefs in

Puerto Rico are reportedly similar to those of scleractinian-dominated patch reefs [15, 21]. R.

textilis has also been documented to overgrow both dead and living coral colonies of shallow

reefs in Dongsha Atoll, South China Sea. Here, R. textilis forms a species community with
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other crustose algae (e.g., Peyssonneliales and Lobophora spp.) that can cover up to 29% of the

benthic substrate [19]. R. bonairensis has also been observed overgrowing corals and sponges

on disturbed Caribbean reefs [25, 26].

Below, we describe four new species of Ramicrusta from Guam based on comparative

genetic and morphological analyses. R. fujiiana and R. lateralis are also reported as new species

records for Guam. These are the first records of the genus Ramicrusta for the Tropical North-

western Pacific marine province [27].

Materials and methods

Collection and morphological analysis

Samples were collected by reef wading, snorkeling, and diving at various sites around Guam

(Fig 1). Collection permits were obtained from the Guam Department of Agriculture’s Divi-

sion of Aquatic and Wildlife Resources (DAWR). Specimens were photographed in situ, col-

lected, and photographed again before being transferred to holding tanks with running

seawater until DNA extraction. Portions of samples were preserved in formalin, silica gel, and

air-dried as herbarium specimens. Specimens were deposited at the University of Guam Her-

barium (GUAM). However, the Ramicrusta fujiiana specimen that was collected, photo-

graphed, and sequenced was lost from the holding tank before it could be preserved. As such,

the report of R. fujiiana for Guam is based on the DNA sequence data obtained from the speci-

men before it was lost. For anatomical observations, material was hand-sectioned using a razor

blade and embedded on 12.7 mm pin mounts using colloidal graphite with isopropanol base

(Energy Beam Sciences). The sections were sputter coated using an Emitech SC7620 Sputter

Coater (Quorum Technologies Ltd., Laughton, East Sussex, United Kingdom). Anatomical

observations were made and imaged using a Phenom G2 Pro desktop scanning electron

microscope (Phenom-World B.V., Eindhoven, The Netherlands).

Molecular analysis

For molecular analyses, total genomic DNA was extracted using the QIAGEN DNeasy Blood

& Tissue Kit (Qiagen Inc., Valencia, CA) or the GenCatch Blood & Tissue Genomic Mini Prep

Kit (Epoch Life Science Inc., Missouri City, TX) following the manufacturers’ bench protocol.

The mitochondrial COI-5P was polymerase chain reaction (PCR) amplified using a newly

designed forward primer TS_COI_F01_10 (5’- TCGARTCYCGTCTCTCTCG -3’) and the

reverse primer GWSRx [28] following the amplification profile 95˚C for 3 minutes; 35 cycles

of 94˚C for 40 seconds, annealing at 48˚C for 40 seconds, extension at 72˚C for 100 seconds; a

final extension at 72˚C for 10 minutes. Chloroplast psbA was amplified using the primers

developed by Yoon et al. [29] following the amplification profile 95˚C for 3 minutes; 35 cycles

of 94˚C for 40 seconds, annealing at 50˚C for 40 seconds, extension at 72˚C for 100 seconds; a

final extension at 72˚C for 10 minutes. Plastid rbcL was amplified using the forward primer

F57 [30] and the reverse primer rbcLrevNEW [31] following the amplification profile reported

by Saunders & Moore [31]. PCR products were sent to Macrogen Inc. (Seoul, Republic of

Korea) for purification and DNA sequencing.

Alignments for each of the gene regions were created using the MUSCLE plugin [32] in

Geneious Pro 11.0.5 [33]. The COI-5P, rbcL, and psbA alignments were all analyzed indepen-

dently prior to a combined analysis of all three genes. An alignment of fifty-one homologous

COI-5P sequences was used to establish the phylogenetic relationship of Ramicrusta species

from Guam and all but two currently described species of the genus. Lack of available sequence

data excluded Ramicrusta calcea from phylogenetic analyses, while Ramicrusta melanoidea
was excluded because of its high average COI-5P sequence divergence with other Ramicrusta
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Fig 1. Maps indicating the study area and sample collection locations. (1) Pacific-centered map indicating the location of the island of Guam. (2)

Map of Guam identifying the sites from which Ramicrusta specimens were collected. Type localities of the four species being described are in red or

pink. Scale bar = 20 km. (3–4) Aerial photographs depicting the type localities of R. labtasiensis (Point # B) and R. taogamensis (Point # C). (5–7) Aerial

photographs showing the type localities of R. adjoulanensis (Point # G) and R. asanitensis (Point # F). Maps were created using the ArcGIS computer

software (Esri, Redlands, CA), and aerial photographs were captured on-site using a drone.

https://doi.org/10.1371/journal.pone.0259336.g001
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species. Individual analyses of rbcL and psbA were limited by a lack of sequences available for

comparison. A combined analysis of all three genes was used to establish phylogenetic rela-

tionships within the genus Ramicrusta. 51 new DNA sequences were generated for Ramicrusta
specimens from Guam, of which 24 COI (MW960726—MW960749), 8 rbcL (MW960750—

MW960757), and 19 psbA sequences (MW960758—MW960776; S1 Table). For all alignments,

the general time reversal + invariable sites + gamma distribution (GTR+I+G) evolutionary

model was selected as the optimal model using jModeltest 2.1.3 [34]. The concatenated align-

ment used in the combined analysis was partitioned by gene, and GTR+I+G was selected as

the optimal model for each partition in the alignment. Phylogenetic analyses were performed

for all alignments using maximum likelihood (ML) methods in RAxML [35]. The proportion

of invariable sites and gamma shape parameters were estimated from the data, and sequence

divergence was calculated using the MEGA version X computer software [36]. Sequence diver-

gence was calculated using a neighbor-joining algorithm under a Kimura 2-parameter substi-

tution model, which has been most often used when describing or reporting new Ramicrusta
species [13, 19, 23]. Nonparametric bootstrapping (1000 replicates) was used to estimate node

support. Bayesian inference was completed for each alignment using the MrBayes 3.1.2 [37]

plugin in Geneious Pro 11.0.5 [32]. Each alignment was run for 1,000,000 generations with

trees sampled every 100 generations, and the first 3,000 trees were discarded as burn-in (aver-

age standard deviation of split frequencies < 0.01). All COI-5P, rbcL, and psbA sequences

obtained were deposited in GenBank (S1 Table), and once released, all COI-5P and rbcL
sequences will also be available in the Barcode of Life Database (BOLD) [38].

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an

ISSN or ISBN will represent a published work according to the International Code of Nomen-

clature for algae, fungi, and plants, and hence the new names contained in the electronic publi-

cation of a PLoS article are effectively published under that Code from the electronic edition

alone, so there is no longer any need to provide printed copies.

In addition, new names contained in this work have been submitted to World Register of

Marine Species (WoRMS), from where they will be made available to the Global Names Index.

The WoRMS LSIDs can be resolved and the associated information viewed through any stan-

dard web browser by appending the LSID contained in this publication to the prefix http://

marinespecies.org/. The online version of this work is archived and available from the follow-

ing digital repositories: PubMed Central, LOCKSS.

Results

Molecular and phylogenetic results

Phylogenetic analyses of the official barcode marker for red algae, COI-5P, supported the rec-

ognition of four new Ramicrusta species from Guam (Fig 2). RbcL and psbA phylogenies also

support the recognition of four new Ramicrusta species, but the lack of sequences for previ-

ously described species does not allow for a comprehensive evaluation of phylogenetic rela-

tionships (S1 and S2 Figs). Analysis of the partitioned COI-5P, rbcL, and psbA alignment was

congruent with the most taxon-complete COI-5P analysis (Fig 3).

Taxonomic analyses

Ramicrusta fujiiana E.M.S.Pestana, G.N.Santos, Cassano et J.M.C.Nunes. (in Pestana

et al., 2020: 39–55, Fig 2A–2E) Fig 4.
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Type locality: Maraú, Algodões (14˚04’15,06”S–38˚57’32,05”W), Bahia, Brazil [22].

Specimen examined: GH0015078, Orote Point, Apra Harbor, Guam, Mariana Islands,

western Pacific Ocean, 8.0 m depth, coll. T. Schils & M. Mills, 22.vi.2017.

Thallus was orangish-purple, completely calcified, closely appressed, and was tightly adher-

ent to the substratum (Fig 4). The habit of the Guam specimen differed from the reddish-

orange specimens from Brazil, but R. fujiiana specimens from Guam and Brazil shared their

strong adherence to the substratum [22]. The Guam specimen was unfortunately lost from the

holding tank before further anatomical observations could be completed, so the report of R.

fujiiana for Guam is based on DNA sequence data. The COI-5P barcode sequences of Guam

Fig 2. Bayesian inference phylogenetic tree of 51 COI-5P sequences, representing 18 Ramicrusta species and two Incendia species as outgroups. Bootstrap

support and Bayesian posterior probability values are printed at each node (bootstrap support/posterior probability). Newly described species are in bold type.

https://doi.org/10.1371/journal.pone.0259336.g002
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sample was nearly identical, with a maximum 0.36% and average 0.08% intraspecific sequence

divergence to the R. fujiiana specimens from Brazil. Phylogenetic analyses supported the

report of R. fujiiana for Guam based on DNA sequence data (Figs 2 and 3). The difference in

environment between the sampling locations in Guam and Brazil could explain the differences

in habit between these genetically equivalent plants.

Fig 3. Bayesian inference phylogenetic tree of a partitioned alignment of COI-5P, psbA, and rbcL sequences, representing 19 Ramicrusta species and two

Incendia species as outgroups. Bootstrap support and Bayesian posterior probability values are printed at each node (bootstrap support/posterior probability).

Newly described species are in bold type.

https://doi.org/10.1371/journal.pone.0259336.g003
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Ramicrusta lateralis K.R.Dixon. (in Dixon & Saunders, 2013: 82–108, Figs 57–62)

Fig 5.

Type locality: Imenaka Reef (19.46389˚S; 169.223056˚E), Loanpekel, Whitegrass, Tanna,

Vanuatu, South Pacific Ocean [13].

Specimens examined: GH0015212, Tanguisson reef flat, Guam, Mariana Islands, western

Pacific Ocean, 0.5–1.0 m depth, coll. T. Schils, M. Deinhart & K. Borja, 25.v.2018; GH0015072,

reef flat outside of the University of Guam Marine Laboratory, Pago Bay, Guam, Mariana

Islands, western Pacific Ocean, 0.5–1.0 m depth, coll. T. Schils & M. Mills, 15.iv.2017.

Thalli were brown to reddish brown and heavily calcified (Fig 5). Crusts were 225–550 μm

thick and closely appressed. Typically, crusts were tightly adherent but loosely attached around

some of the margins (Fig 5). Hypothallial filaments were parallel and composed of dorsally

inflated oval cells that gave rise to assurgent perithallial filaments at broad angles. Plants were

attached by squat, robust, thick-walled unicellular rhizoids (c. 50 μm long, 12–16 μm wide),

which originated from the ventral portion of hypothallial cells and penetrated the thick (15–

25 μm) hypobasal cuticle (Fig 5). Perithallial filaments were simple or occasionally irregularly

branched. Portions of secondary growth as well as overgrowth were present. Secondary growth

could be recognized as alternating stacked layers of epithalli and lower perithalli (absence of

hypothallial layers), while overgrowth appeared as two fully formed thalli stacked atop one

another. Cells of the lower perithallus were thick walled, heavily calcified, and were frequently

connected to adjacent cells via fusion or secondary pit connections (Fig 5). The epithallus was

thin, lacked secondary pit connections and cell fusions, and was composed of three to four

tiers of small rectilinear cells (Fig 5). Hair bases or trichocytes embedded in the upper perithal-

lus were large (c. 20 μm long and c. 23 μm wide), bullet-shaped, and terminated filaments of

three or four cells (Fig 5). Reproduction was not observed.

The COI-5P barcode sequences of the four Guam samples were nearly identical (average

0.08% intraspecific sequence divergence) to that of the holotype of R. lateralis. They also

shared anatomical features such as the structure of the epithallus, perithallial filaments being

borne from the hypothallus at broad angles and having portions of secondary growth. There

were, however, differences in their gross morphologies: the Guam specimens were tightly

adherent to the substrate throughout, while only free around some of the margins. Crusts of

the Guam plants were typically thinner, but they were rigid and robust, as opposed to being

brittle in Vanuatu [13]. The difference in environment between the sampling locations in

Fig 4. Ramicrusta fujiiana (GH0015078). (10) In-situ image of the specimen prior to collection. (11) Habit of the

specimen.

https://doi.org/10.1371/journal.pone.0259336.g004
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Fig 5. Ramicrusta lateralis (Fig 5: GH0015072; Fig 5: GH0015212). (12) Habit of a specimen. Scale bar = 1 cm. (13)

Crustose thallus occasionally free at the margins. Scale bar = 2 cm. (14) Frequent unicellular rhizoids (arrows)

penetrating the hypobasal cuticle. Scale bar = 100 μm. (15) Radial section through crust showing secondary pit

connections (arrowheads) and cell fusions (arrow) in the lower perithallus. Scale bar = 100 μm. (16) Radial section

showing thin epithallus. Scale bar = 100 μm. (17) Radial section showing a large bullet-shaped hair base or trichocyte

(arrowhead) terminating a filament of four cells (arrow) that are significantly larger than other surrounding apical cells

(asterisks). Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0259336.g005
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Guam and Vanuatu could explain the morphological differences between these genetically

equivalent plants.

Ramicrusta adjoulanensis M.Mills et Schils sp. nov. [urn:lsid:marinespecies.org:tax-

name:XXXXXXX]

Fig 6.

Holotype: GH0015334, 5.0 m depth, coll. T. Schils & M. Deinhart, 07.viii.2018 (University

of Guam Herbarium; GUAM).

Type locality: Adjoulan Point at the mouth of Talofofo Bay (13.33806˚N, 144.770278˚E),

Guam, Mariana Islands, western Pacific Ocean.

Etymology: Named after the type locality.

Distribution: Known from the type locality, Agat, Tanguisson, and Umatac Bay in Guam.

Specimen examined: GH0015334, Talofofo Bay, Guam, Mariana Islands, western Pacific

Ocean, 5.0 m depth, coll. T. Schils & M. Deinhart, 07.viii.2018.

Thalli were burnt orange to burgundy, tightly adherent, and irregularly lumpy due to irregular-

ities in the substrata (Fig 6). Crusts were calcified throughout and typically closely appressed to

the substrate but occasionally free at the margins. Crusts were relatively thick, typically reaching

350–600 μm in thickness. Hypothallial cells were parallel and composed of dorsally inflated oval

cells that centrally gave rise to assurgent perithallial filaments. Rhizoids were frequently produced,

unicellular, and were 75–100 μm long and 10–14 μm wide (Fig 6). Rhizoids were cut off from the

ventral portions of hypothallial cells and emerged from the thick (typically 30–35 μm thick) hypo-

basal cuticle. Cells of the lower perithallus were also oval, but less dorsally inflated than the

hypothallial filaments. Cells of the lower perithallus are typically large (18–32 μm high and 16–

22 μm wide) and are connected to adjacent cells commonly by pit connections and occasionally

by cell fusions (Fig 6). Cells in the mid-perithallus rapidly decrease in size, similar to what was

observed in R. bonairensis [15]. The epithallus is generally well developed, often comprising at

least half of the entire perithallus (Fig 6). Upper perithallial cells were commonly connected by

secondary pit connections or fused with adjacent cells. Hair bases or trichocytes were absent in

the upper perithallus and the upper perithallial filaments were crowded due to occasional branch-

ing in the upper perithallus (Fig 6). Reproductive features were not observed.

Ramicrusta adjoulanensis shares morphological characteristics with its close relative R.

bonairensis, such as the significant decrease in cell size in the mid-perithallus, the well-devel-

oped epithallus with frequent cell fusions and secondary pit connections, and the lack of hair

bases or trichocytes. Ramicrusta adjoulanensis was distinguished from R. bonairensis primarily

by its attachment, with crusts that were occasionally free at the margins and by its relatively

long rhizoids (75–100 μm long) that were frequently produced and penetrated the thick hypo-

basal cuticle. These features combined with DNA sequence divergences differentiated Rami-
crusta adjoulanensis from R. bonairensis and other species of the genus.

Ramicrusta asanitensis M.Mills et Schils sp. nov. [urn:lsid:marinespecies.org:taxname:

XXXXXXX]

Fig 7.

Holotype: GH0015151, 1.0 m depth, coll. T. Schils & M. Mills, 27.x.2017 (University of

Guam Herbarium; GUAM).

Type locality: Asanite Cove / First Beach (13.34251˚N, 144.77194˚E), Guam, Mariana

Islands, western Pacific Ocean.

Etymology: Named after the type locality, Asanite Cove.

Distribution: Known from the type locality and from Pago Bay, Hagåtña Bay and Ipan

Beach, Guam.

Specimens examined: GH0015151, Asanite Cove / First Beach reef flat, Guam, Mariana

Islands, western Pacific Ocean, 1.0 m depth, coll. T. Schils & M. Mills, 27.x.2017; GH0015152,
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Fig 6. Ramicrusta adjoulanensis (GH0015334). (18) In-situ image of the holotype specimen. Scale bar = 2 cm. (19)

Habit of the holotype specimen. Scale bar = 2 cm. (20) Radial section of a free margin showing frequently produced

unicellular rhizoids (arrows) penetrating the thick hypobasal cuticle. Scale bar = 100 μm. (21) Section showing

secondary pit connections (arrowhead) and cell fusions (arrow) in the lower perithallus, as well as the rapid decrease in

cell size around the mid-perithallus. Scale bar = 100 μm. (22) Well-developed epithallus with frequently branching

filaments whose cells are commonly pit connected (arrowhead) or fused (arrow) with those of adjacent filaments. Scale

bar = 100 μm. (23) Radial-vertical section of the thick crust with well-developed epithallus lacking hair bases or

trichocytes. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0259336.g006
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Fig 7. Ramicrusta asanitensis (Fig 7: GH0015151; Fig 7: GH0015152). (24) In-situ image of the holotype specimen.

Scale bar = 2 cm. (25) Habit of the holotype specimen. Scale bar = 2 cm. (26) Radial-vertical section showing thick

crust with multiple layers of growth. Scale bar = 2 mm. (27) Unicellular rhizoids (arrow) penetrating the thin

hypobasal cuticle. Scale bar = 50 μm. (28) Radial section showing portions of primary, secondary, and tertiary growth.

Scale bar = 100 μm. (29) Radial section showing cell fusions (arrow) and secondary pit connections (arrowheads) in

the lower perithallus. Scale bar = 100 μm. (30) Section showing heavily calcified, bullet-shaped hair base or trichocyte

(arrowhead) terminating a filament of four cells (arrow) that are significantly larger than other surrounding apical cells

(asterisks). Scale bar = 50 μm. (31) Thallus with small, rounded outgrowths on the surface and evidence of multiple

hair bases or trichocytes penetrating the epithallus, resulting in small surface pores throughout the thallus surface.

Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0259336.g007
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Asanite Cove / First Beach reef flat, Guam, Mariana Islands, western Pacific Ocean, 1.0–1.5 m

depth, coll. T. Schils & M. Mills, 27.x.2017; GH0015259, Ipan Beach reef flat, Guam, Mariana

Islands, western Pacific Ocean, 0.5–1.0 m depth, coll. T. Schils, M. Deinhart & K. Borja, 18.

vi.2018.

Thalli were dark maroon, heavily calcified, and formed closely appressed and tightly adher-

ent crusts on various secondary reef structures such as large rocks and dead corals (Fig 7). The

thallus surface contained small, rounded outgrowths, and the crusts were significantly thicker

(upwards of 2 mm, but typically 500–1000 μm) than most other Ramicrusta species (Fig 7).

The hypothallial filaments were parallel and composed of elongate, distally inflated rhomboid

to rectilinear cells that gave rise to assurgent perithallial filaments centrally or at variable angles

(> 45˚). Plants were attached by short (50–80 μm) unicellular rhizoids that were cut off at the

distal ventral corners of hypothallial cells and penetrated the thin (10–15 μm thick) hypobasal

cuticle (Fig 7). Perithallial filaments were simple, and the perithallus was composed of distinct

upper and lower zones. Portions of secondary to tertiary growth as well as overgrowth were

present (Fig 7). Secondary and tertiary growth appeared as stacked layers of epithalli and lower

perithalli, while overgrowth appeared as one fully formed crust growing atop another. Cells in

the lower perithallus were large (15–30 μm long and 12–22 μm wide), distally inflated, and rec-

tilinear to ovoid in shape. These cells were thick walled and heavily calcified, and displayed fre-

quent lateral secondary pit connections or cell fusions (Fig 7). The epithallus was relatively

thin and consisted of four to five cell tiers that lacked cell fusions and secondary pit connec-

tions. The cells were smaller than those in the lower perithallus but were still thick-walled and

heavily calcified (Fig 7). Hair bases or trichocytes were large (20–24 μm long and 11–14 μm

wide), bullet-shaped, heavily calcified, and terminated four to five-celled filaments (Fig 7).

Hair bases or trichocytes were often, but not always, associated with a pore on the thallus sur-

face (Fig 7). Reproductive features were not observed.

Ramicrusta asanitensis possessed certain features similar to those commonly found in other

Ramicrusta species, namely a closely appressed habit and frequent secondary pit connections

and cell fusions in the lower perithallus. In addition, it also possessed the thin epithallus shared

with its close relatives R. appressa and R. fujiiana. However, Ramicrusta asanitensis differed

from other Ramicrusta species by the heavy calcification in the epithallus (as well as elsewhere

in the crust), the thickness of the crust (upwards of 2 mm thick), and the extent of its second-

ary, tertiary, and quaternary perithallial growth. These features, in conjunction with its distinct

genetic sequences, distinguished Ramicrusta asanitensis from other Ramicrusta species.

Ramicrusta labtasiensis M.Mills et Schils sp. nov. [urn:lsid:marinespecies.org:taxname:

XXXXXXX]

Fig 8

Holotype: GH0015097, 0.5 m depth, coll. T. Schils & M. Mills, 28.ix.2017 (University of

Guam Herbarium; GUAM).

Type locality: Pago Bay (13.42738˚N, 144.798922˚E), Guam, Mariana Islands, western

Pacific Ocean.

Etymology: Named after the type locality, the seawater intake channel behind the Univer-

sity of Guam Marine Laboratory, Pago Bay, Guam. The CHamoru name for Marine Lab was

chosen to celebrate the 50th anniversary of the laboratory and to honor the continued support

that the institute has received from the island community, the Government of Guam, and the

University of Guam.

Distribution: Known from the type locality, Lafac Bay, Tumon Bay, and Ritidian Point in

Guam.

Specimens examined: GH0015097, Pago Bay reef flat behind the Marine Laboratory,

Guam, Mariana Islands, western Pacific Ocean, 0.5 m depth, coll. T. Schils & M. Mills, 28.
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Fig 8. Ramicrusta labtasiensis (Fig 8: GH0015097; Fig 8: GH0015717). (32) In-situ image of the holotype specimen

displaying one distinct coloration. Scale bar = 2 cm. (33) In-situ image of a specimen displaying the other observed

coloration (arrow). (34) Crust attached by frequent unicellular rhizoids (arrow). Scale bar = 100 μm. (35) Radial-

vertical section showing the irregularly-branching lower perithallus with frequent secondary pit connections

(arrowheads) and cell fusions (arrow). Scale bar = 100 μm. (36) Radial section showing the thin epithallus with

occasional secondary pit connections (arrowheads) and pairs of filaments borne from the same cell (asterisks). Scale

bar = 100 μm. (37) Oblique view of the perithallus showing bullet-shaped hair bases (arrows) and associated surface

pores (arrowheads). Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0259336.g008
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ix.2017; GH0015717, Lafac Bay, Guam, Mariana Islands, western Pacific Ocean, 6.6 m depth,

coll. T. Schils & M. Mills, 31.ix.2019.

Observed thalli expressed two distinct colorations. Thalli were either reddish brown to

maroon, with patches of lighter brown scattered throughout, or burnt orange to maroon (Fig

8). Plants were brittle, closely appressed and tightly adherent to dead coral substrate or other

calcifying red algae, and formed crusts that were 240–500 μm thick. Hypothallial filaments

were parallel and composed of dorsally inflated cells that gave rise to assurgent perithallial fila-

ments centrally or at broad angles. Plants were frequently attached by unicellular rhizoids (75–

95 μm long and 10–14 μm wide) that cut off the distal ventral portion of hypothallial cells and

penetrated the thin (12–15 μm) hypobasal cuticle (Fig 8). Cells of the lower perithallus were

rounded, generally slightly elongate, and formed perithallial filaments that were often irregu-

larly branched. Cells were heavily calcified and were frequently connected to adjacent cells via

secondary pit connections or cell fusions (Fig 8). The epithallus was thin and was composed of

two to four tiers of small rectilinear cells that were occasionally connected to cells of adjacent

filaments via cell fusions or secondary pit connections. Pairs of upper perithallial filaments

were often borne from the same cell in the mid-perithallus, resulting in filament crowding in

the epithallus (Fig 8). Hair bases were infrequent, but often observed in close proximity to one

another. Hair bases were bullet shaped, 23–27 μm long and 14–19 μm wide, and terminated fil-

aments of three to four cells that were typically, but not always, associated with a pore on the

thallus surface (Fig 8). Reproductive features were not observed.

Ramicrusta labtasiensis shared features with its close relative R. lateralis such as frequent

cell fusions and irregular branching of filaments in the lower perithallus. Ramicrusta labtasien-
sis was primarily distinguished from R. lateralis by its attachment, where the thallus was fre-

quently attached by robust, relatively long rhizoids (75–95 μm long) throughout its entire

undersurface. It is also distinguished by the frequent branching and occasional secondary pit

connections and cell fusions in the relatively thin epithallus. These features in combination

with the distinct DNA sequences differentiate Ramicrusta labtasiensis from other Ramicrusta
species.

Ramicrusta taogamensis M.Mills et Schils sp. nov. [urn:lsid:marinespecies.org:taxname:

XXXXXXX]

Fig 9.

Holotype: GH0015094, 6.3 m depth, coll. T. Schils & M. Mills, 22.ix.2017 (University of

Guam Herbarium; GUAM).

Type locality: Pago Bay (13.42664˚N, 144.799092˚E), Guam, Mariana Islands, western

Pacific Ocean.

Etymology: Named after the type locality near Taogam Point, Pago Bay, behind the Univer-

sity of Guam Marine Laboratory.

Distribution: Known only from the type locality and Bile Bay in Guam.

Specimens examined: GH0015094, Pago Bay submarine terrace, Guam, Mariana Islands,

western Pacific Ocean, 6.3 m depth, coll. T. Schils & M. Mills, 22.ix.2017; GH0015103, Pago

Bay submarine terrace, Guam, Mariana Islands, western Pacific Ocean, 5.4 m depth, coll. T.

Schils & M. Mills, 22.ix.2017.

Thalli were deep red to crimson, heavily calcified, and formed tightly adherent and closely

appressed crusts (250–500 μm thick) on bedrock (Fig 9). The thallus surface mimicked that of

the substratum. The hypothallial filaments were parallel and composed of dorsally inflated,

elongate rhomboid and rectilinear cells that gave rise to assurgent perithallial filaments cen-

trally or at broad angles. Plants were attached by short (c. 70 μm long and c. 16 μm wide) uni-

cellular rhizoids that terminated at the distal ventral portion of hypothallial cells and

penetrated the relatively thick (~20 μm) hypobasal cuticle (Fig 9). The perithallus was
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Fig 9. Ramicrusta taogamensis (GH0015094). (38) In-situ image of the holotype specimen. Scale bar = 2 cm. (39)

Habit of the holotype specimen. Scale bar = 2 cm. (40) Short unicellular rhizoid (arrow) cutting off the distal ventral

portion of a hypothallial cell. Scale bar = 100 μm. (41) Radial section showing lower perithallus with frequent cell

fusions (arrow) and secondary pit connections (arrowheads). Scale bar = 100 μm. (42) Radial section showing cell

fusions (arrow) and secondary pit connections (arrowheads) in the well-developed epithallus. Scale bar = 100 μm. (43)

Oblique view of a radial section showing a hair base terminating a three cell filament (arrow), its associated surface

pore (arrowhead), and a small projection from which a hair may have once emerged (triangle). Scale bar = 30 μm.

https://doi.org/10.1371/journal.pone.0259336.g009
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composed of distinct upper and lower zones, divided by a horizontal linear series of cells that

were irregularly shaped and frequently fused with the cells of neighboring filaments. The lower

perithallus was largely composed of slightly dorsally elongate, thick-walled, and heavily calci-

fied ovoid cells with frequent cell fusions and secondary pit connections (Fig 9). The upper

perithallus (epithallus) was generally well-developed, comprising up to half of the entire peri-

thallus. The upper perithallial cells were smaller and also slightly dorsally ovoid, forming a dor-

sal cortical layer of typically four to six cells thick. The upper perithallial cells were occasionally

connected to adjacent cells by secondary pit connections or cell fusions (Fig 9). Hair bases

were 17–22 μm long and 13–16 μm wide, circular to bullet-shaped, and terminated mostly

three- to four-celled hair filaments (Fig 9). Reproduction was not observed.

The molecular results suggested that R. taogamensis was a cryptic sister-species of R.

appressa. Ramicrusta taogamensis had much in common with its close relative R. appressa,

such as its frequent cell fusions in the lower perithallus and tight adherence by short rhizoids,

but was primarily distinguished by its generally well-developed epithallus with occasional cell

fusions and secondary pit connections. The epithallus with distinct horizontal linear series of

cells and the thicker hypobasal cuticle are vegetative features that are not collectively shared by

any other Ramicrusta species. The differences in vegetative anatomy in combination with phy-

logenetic data distinguish Ramicrusta taogamensis from R. appressa and other Ramicrusta
species.

Discussion and conclusions

Dixon and Saunders [13] used 4% K2P COI-5P interspecific variation as a threshold to distin-

guish Ramicrusta species. Most Ramicrusta species have been reported to exhibit low (< 1.0%)

intraspecific sequence divergence values [13, 15, 19], with Ramicrusta appressa K.R.Dixon

being the sole exception [13]. There was an average of 11.97% COI-5P sequence divergence

between Ramicrusta species, ranging from 10.24% (R. appressa) to 13.99% (R. australica)

divergence. For these analyses, Ramicrusta lehuensis was considered as a sister species to R.

fujiiana in recognition of the diagnostic morphological features used to describe R. lehuensis
despite the high COI-5P similarity between both species (< 2% divergence). An in-depth

examination of the relationship between both species warrants further study. COI-5P

sequences of R. textilis from Jamaica, Vanuatu, and Taiwan are nearly identical, while R. later-
alis specimens from Guam and Vanuatu only demonstrate an average intraspecific divergence

of 0.08% and R. fujiiana specimens from Guam and Brazil exhibit an average intraspecific

divergence of 0.18%. The high sequence similarity within species from distant geographical

regions further supports the recognition of four new Ramicrusta species from Guam. Speci-

mens of R. appressa from Australia and the Philippines were 2.04% divergent from the holo-

type specimen from Vanuatu, leading Dixon and Saunders [13] to conclude that they may

represent cryptic sister species. The description of Ramicrusta taogamensis renders R. appressa
paraphyletic and thus provides support to recognize the R. appressa samples from Australia

and the Philippines as a distinct, monophyletic species. Average sequence divergence between

Ramicrusta taogamensis and the holotype specimen of R. appressa was 2.42%, supporting its

taxonomic recognition as a new species. Apart from R. taogamensis, each new species was sep-

arated from its nearest-neighbor by more than 4.9% COI-5P barcode divergence. Low mean

intraspecific barcode divergence (0.18% in R. fujiiana, 0.08% in R. lateralis, 0.33% in R. adjou-
lanensis, 0.00% in R. asanitensis, 0.14% in R. labtasiensis, and 0.11% in R. taogamensis) was

also demonstrated for each species with more than one specimen sequences. The new Rami-
crusta species exhibited 12.34% (R. adjoulanensis), 12.12% (R. asanitensis), 12.87% (R. labta-
siensis), and 10.78% (R. taogamensis) divergence when compared to other sequenced
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representatives of the genus (Table 1). COI-5P sequences of R. textilis from Jamaica, Vanuatu,

and Taiwan are nearly identical, while R. lateralis specimens from Guam and Vanuatu only

demonstrate an average of 0.16% intraspecific divergence and R. fujiiana specimens from

Guam and Brazil exhibit 0.36% average intraspecific divergence. Such high sequence similarity

within species from distant geographical regions further supports the recognition of four new

Ramicrusta species from Guam.

Crustose calcifying red algae (CCRA) have historically been difficult to identify, largely due

to the cryptic diversity and morphological convergence among species [39, 40], as well as their

tendency to demonstrate phenotypic plasticity influenced by different environmental factors

[41]. As such, studies of CCRA systematics have benefitted greatly from combining molecular

methods and anatomical observations [3, 13, 15, 27, 38, 41, 42]. Twenty-four collections from

Guam matched the anatomy and morphology of the peyssonnelioid red alga Ramicrusta. Ana-

tomical observations paired with DNA sequence analysis revealed the presence of six Rami-
crusta species. Two of these species corresponded to the previously described species, R.

lateralis and R. fujiiana, the latter being confirmed by only DNA sequence analysis. Despite its

relative abundance on many reefs on Guam, Ramicrusta was not known from Guam or any-

where else in the Tropical Northwestern Pacific marine province [27] until now. The COI-5P

barcode is widely used to delimit species by employing the barcode gap, and it has been crucial

in resolving species boundaries within Ramicrusta [13, 15, 19, 22]. Ramicrusta adjoulanensis,
R. asanitensis, R. labtasiensis, and R. taogamensis exhibited sufficient levels of interspecific

divergence to be considered as new species within the genus Ramicrusta. The high relative

abundance of Ramicrusta on certain reefs in Guam may be explained by an increase in distur-

bance events and an overall decline in reef health over the last decades [43]. Many of the Rami-
crusta species in Guam were found on reef flats that experience severe fluctuations in

temperature, salinity, and nutrients whereas others occurred abundantly on reefs that have

been impacted by coral bleaching events or are chronically exposed to pulses of terrestrial run-

off. Ramicrusta taxa have previously been reported to thrive in disturbed or environmentally

stressed reef habitats [14, 15, 26]. There have not been many studies of crustose algae around

Guam, and the diversity and ecology of Guam’s CCRA communities are still poorly under-

stood. Ramicrusta species have been reported in tropical to temperate waters across the globe.

However, because of this study, which was based on a modest sampling effort, Guam now

joins Vanuatu in having the highest reported Ramicrusta species richness of all marine ecore-

gions in the world (Fig 10). The recently documented high species richness of these small

island nations suggests that the occurrence of Ramicrusta species is likely to be severely under-

reported globally. The potentially significant ecological impacts of Ramicrusta outbreaks on

Table 1. Table showing the minimum interspecific divergence and maximum intraspecific divergence (Kimura 2-parameter) of the COI-5P marker for all six Rami-
crusta species from Guam.

Kimura 2-Parameter Subst. Model

Species N Min. interspecific divergence (%) Max. intraspecific divergence (%) Nearest Neighbor

Ramicrusta lateralis 4 8.25 0.16 Ramicrusta labtasiensis
Ramicrusta fujiiana 4 1.48 0.36 Ramicrusta lehuensis
Ramicrusta asanitensis 6 8.48 0.00 Ramicrusta lehuensis
Ramicrusta labtasiensis 7 8.25 0.48 Ramicrusta lateralis
Ramicrusta adjoulanensis 4 4.97 0.76 Ramicrusta bonairensis
Ramicrusta taogamensis 3 2.33 0.16 Ramicrusta appressa

The number of sequenced specimens per species (N) and the nearest neighbor of each species are also shown.

https://doi.org/10.1371/journal.pone.0259336.t001
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reef health [14, 19, 25, 26] emphasizes the need for further investigations on Ramicrusta and

CCRA diversity and ecology on a global scale.
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Fig 10. A map of reported Ramicrusta species richness by marine ecoregion. The map, created using the ArcGIS computer software, includes all reported Ramicrusta
species with available DNA sequence data. As with the molecular analyses, Ramicrusta calcea was excluded from the map due to its uncertain distribution range and lack

of available sequence data.
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